15 research outputs found

    Green function techniques in the treatment of quantum transport at the molecular scale

    Full text link
    The theoretical investigation of charge (and spin) transport at nanometer length scales requires the use of advanced and powerful techniques able to deal with the dynamical properties of the relevant physical systems, to explicitly include out-of-equilibrium situations typical for electrical/heat transport as well as to take into account interaction effects in a systematic way. Equilibrium Green function techniques and their extension to non-equilibrium situations via the Keldysh formalism build one of the pillars of current state-of-the-art approaches to quantum transport which have been implemented in both model Hamiltonian formulations and first-principle methodologies. We offer a tutorial overview of the applications of Green functions to deal with some fundamental aspects of charge transport at the nanoscale, mainly focusing on applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references, submitted to Springer series "Lecture Notes in Physics

    Zum Tempowandel bei der historisierenden AuffĂŒhrungspraxis

    No full text

    Effect of intra-arrest trans-nasal evaporative cooling in out-of-hospital cardiac arrest: a pooled individual participant data analysis

    No full text
    Background: Randomized trials have shown that trans-nasal evaporative cooling initiated during CPR (i.e. intra-arrest) effectively lower core body temperature in out-of-hospital cardiac arrest patients. However, these trials may have been underpowered to detect significant differences in neurologic outcome, especially in patients with initial shockable rhythm. Methods: We conducted a post hoc pooled analysis of individual data from two randomized trials including 851 patients who eventually received the allocated intervention and with available outcome (“as-treated” analysis). Primary outcome was survival with favourable neurological outcome at hospital discharge (Cerebral Performance Category [CPC] of 1–2) according to the initial rhythm (shockable vs. non-shockable). Secondary outcomes included complete neurological recovery (CPC 1) at hospital discharge. Results: Among the 325 patients with initial shockable rhythms, favourable neurological outcome was observed in 54/158 (34.2%) patients in the intervention and 40/167 (24.0%) in the control group (RR 1.43 [confidence intervals, CIs 1.01–2.02]). Complete neurological recovery was observed in 40/158 (25.3%) in the intervention and 27/167 (16.2%) in the control group (RR 1.57 [CIs 1.01–2.42]). Among the 526 patients with initial non-shockable rhythms, favourable neurological outcome was in 10/259 (3.8%) in the intervention and 13/267 (4.9%) in the control group (RR 0.88 [CIs 0.52–1.29]; p = 0.67); survival and complete neurological recovery were also similar between groups. No significant benefit was observed for the intervention in the entire population. Conclusions: In this pooled analysis of individual data, intra-arrest cooling was associated with a significant increase in favourable neurological outcome in out-of-hospital cardiac arrest patients with initial shockable rhythms. Future studies are needed to confirm the potential benefits of this intervention in this subgroup of patients.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore